Abstract
AbstractPathogenic heterozygous missense mutations in theDNM1gene result in a novel form of epileptic encephalopathy.DNM1encodes for the large GTPase dynamin-1, an enzyme with an obligatory role in the endocytosis of synaptic vesicles (SVs) at mammalian nerve terminals. PathogenicDNM1mutations cluster within regions required for its essential GTPase activity, implicating disruption of this enzyme activity as being central to epileptic encephalopathy. We reveal that the most prevalent pathogenic mutation ofDNM1, R237W, disrupts dynamin-1 enzyme activity and SV endocytosis when overexpressed in central neurons. To determine how this dominant-negative heterozygous mutant impacted cell, circuit and behaviour when expressed from its endogenous locus, we generated a mouse carrying the R237W mutation. Neurons isolated from heterozygous mice displayed dysfunctional SV endocytosis, which translated into altered excitatory neurotransmission and seizure-like phenotypes. Importantly, these phenotypes were corrected at the cell, circuit andin vivolevel by the drug, BMS-204352, which accelerates SV endocytosis. This study therefore provides the first direct link between dysfunctional SV endocytosis and epilepsy, and importantly reveals that SV endocytosis is a viable therapeutic route for monogenic intractable epilepsies.
Publisher
Cold Spring Harbor Laboratory