Neuropilin 1 mediates epicardial activation and revascularization in the regenerating zebrafish heart

Author:

Lowe Vanessa,Wisniewski Laura,Sayers Jacob,Frankel PaulORCID,Mercader-Huber NadiaORCID,Zachary Ian CORCID,Pellet-Many CarolineORCID

Abstract

AbstractUnlike adult mammals, zebrafish are able to naturally regenerate their heart. A key mechanism in zebrafish heart regeneration is the activation of the epicardium, leading to the establishment of a supporting scaffold for newly formed cardiomyocytes, angiogenesis and cytokine secretion. Neuropilins (NRPs) are cell surface co-receptors mediating functional signaling of kinase receptors for cytokines known to play critical roles in zebrafish heart regeneration, including Platelet-Derived growth factor (PDGF), Vascular Endothelial growth factor (VEGF), and Fibroblast growth factor (FGF). Herein, we investigated the role of neuropilins in the response of the zebrafish heart to injury and its subsequent regeneration. All four zebrafish neuropilin isoforms, nrp 1a, 1b, 2a, and 2b, were upregulated following cardiac cryoinjury and were strongly expressed by the activated epicardium. A nrp1a mutant, coding for a truncated, non-functional protein, showed a significant delay in heart regeneration in comparison to Wild-Type fish and displayed persistent collagen deposition. The regenerating hearts of nrp1a mutants were less vascularized and epicardial-derived cell migration and re-expression of the developmental gene Wilms’ tumor 1 was severely impaired in nrp1a mutants. Moreover, cryoinjury-induced activation and migration of epicardial cells in heart explants was strongly reduced in nrp1a mutant zebrafish. These results identify a key role for Nrp1 in zebrafish heart regeneration, mediated through epicardial activation, migration and revascularization.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3