Genetic dissection of femoral and tibial microarchitecture

Author:

Lu Lu,Huang Jinsong,Xu FuyiORCID,Xiao Zhousheng,Wang Jing,Zhang Bing,David Nicolae Valentin,Arends Danny,Gu Weikuan,Ackert-Bicknell Cheryl,Sabik Olivia L.ORCID,Farber Charles R.,Quarles Leigh Darryl,Williams Robert W.

Abstract

AbstractOur understanding of the genetic control of bone has relied almost exclusively on estimates of bone mineral density. In contrast, here we have used high-resolution x-ray tomography (8 μm isotropic voxels) to measure femoral and tibial components across a set of ~600 mice belonging to 60 diverse BXD strains of mice. We computed heritabilities of 25 cortical and trabecular compartments. Males and females have well matched trait heritabilities, ranging from 0.25 to 0.75. We mapped 16 QTLs that collectively cover ~8% of all protein-coding genes in mouse. A majority of loci are detected only in females, and there is also a bias in favor of QTLs for cortical traits. To efficiently evaluate candidate genes we developed a method that couples gene ontologies with expression data to compute bone-enrichment scores for almost all protein-coding genes. We carefully collated and aligned murine candidates with recent human BMD genome-wide association results. We highlight a subset of 50 strong candidates that fall into three categories: 1. those linked to bone function that have already been experimentally validated (Adamts4, Ddr2, Darc, Adam12, Fkbp10, E2f6, Adam17, Grem2, Ifi204); 2. candidates with putative bone function but not yet tested (e.g., Greb1, Ifi202b) but several of which have been linked to phenotypes in humans; and 3. candidates that have high bone-enrichment scores but for which there is not yet any specific link to bone biology or skeletal disease, including Ifi202b, Ly9, Ifi205, Mgmt, F2rl1, Iqgap2. Our results highlight contrasting genetic architecture between the sexes and among major bone compartments. The joint use and alignment of murine and human data should greatly facilitate function analysis and preclinical testing.DisclosureThe authors declare that no competing interests exist.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3