The importance of Chargaff’s second parity rule for genomic signatures in metagenomics

Author:

Gori Fabio,Mavroeidis Dimitrios,Jetten Mike SMORCID,Marchiori Elena

Abstract

AbstractAn important problem in metagenomic data analysis is to identify the source organism, or at least taxon, of each sequence. Most methods tackle this problem in two steps by using an alignment-free approach: first the DNA sequences are represented as points of a real n-dimensional space via a mapping function then either clustering or classification algorithms are applied. Those mapping functions require to be genomic signatures: the dissimilarity between the mapped points must reflect the degree of phylogenetic similarity of the source species. Designing good signatures for metagenomics can be challenging due to the special characteristics of metagenomic sequences; most of the existing signatures were not designed accordingly and they were tested only on error-free sequences sampled from a few dozens of species.In this work we analyze comparatively the goodness of existing and novel signatures based on tetranu-cleotide frequencies via statistical models and computational experiments; we also study how they are affected by the generalized Chargaff’s second parity rule (GCSPR), which states that in a given sequence longer than 50kbp, inverse oligonucleotides are approximately equally frequent. We analyze 38 million sequences of 150 bp-1,000 bp with 1% base-calling error, sampled from 1,284 microbes. Our models indicate that GCSPR reduces strand-dependence of signatures, that is, their values are less affected by the source strand; GCSPR is further exploited by some signatures to reduce the intra-species dispersion. Two novel signatures stand out both in the models and in the experiments: the combination signature and the operation signature. The former achieves strand-independence without grouping oligonucleotides; this could be valuable for alignment-free sequence comparison methods when distinguishing inverse oligonucleotides matters. Operation signature sums the frequencies of reverse, complement, and inverse tetranucleotides; having 72 features it reduces the computational intensity of the analysis.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nucleotide tetramers TCGA and CTAG: viral DNA and the genetic code (hypothesis);Journal of microbiology, epidemiology and immunobiology;2022-09-25

2. Tetranucleotide Profile of Herpesvirus DNA;Journal of microbiology, epidemiology and immunobiology;2020-06-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3