Tunable Transcriptional Interference at the Endogenous Alcohol Dehydrogenase Gene Locus in Drosophila melanogaster

Author:

Jorgensen Victoria,Chen Jingxun,Wende Helen Vander,Harris Devon,Wong-Deyrup Siu Wah,Chen Yuzhang,Rangan Prashanth,Brar Gloria Ann,Sawyer Eric M.ORCID,Chan LeonORCID,Ünal ElçinORCID

Abstract

AbstractNeighboring sequences of a gene can influence its expression. In the phenomenon known as transcriptional interference, transcription at one region in the genome can repress transcription at a nearby region in cis. Transcriptional interference occurs at a number of eukaryotic loci, including the alcohol dehydrogenase (Adh) gene in Drosophila melanogaster. Adh is regulated by two promoters, which are distinct in their developmental timing of activation. It has been shown using transgene insertion that when the promoter distal from the Adh start codon is deleted, transcription from the proximal promoter becomes de-regulated. As a result, the Adh proximal promoter, which is normally active only during the early larval stages, becomes abnormally activated in adults. Whether this type of regulation occurs in the endogenous Adh context, however, remains unclear. Here, we employed the CRISPR/Cas9 system to edit the endogenous Adh locus and found that removal of the distal promoter does also result in the untimely expression of the proximal promoter-driven mRNA isoform in adults, albeit at lower levels than previously reported. Importantly, we show that transcription from the distal promoter is sufficient to repress proximal transcription in larvae and that the degree of this repression depends on the degree of distal promoter activity. Finally, repression of the endogenous Adh proximal promoter is associated with the enrichment of histone 3 lysine 36 trimethylation (H3K36me3), a chromatin mark necessary for transcription-coupled gene repression in yeast. We conclude that the endogenous Adh locus is developmentally regulated by transcriptional interference in a tunable manner.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3