Modeling the temporal dynamics of the gut microbial community in adults and infants

Author:

Shenhav Liat,Furman Ori,Briscoe Leah,Thompson Michael,Mizrahi Itzhak,Halperin Eran

Abstract

AbstractGiven the highly dynamic and complex nature of the human gut microbial community, the ability to identify and predict time-dependent compositional patterns of microbes is crucial to our understanding of the structure and function of this ecosystem. One factor that could affect such time-dependent patterns is microbial interactions, wherein community composition at a given time point affects the microbial composition at a later time point. However, the field has not yet settled on the degree of this effect. Specifically, it has been recently suggested that only a minority of the operational taxonomic units (OTUs) depend on the microbial composition in earlier times. To address the issue of identifying and predicting temporal microbial patterns we developed a new model, MTV-LMM (Microbial Temporal Variability Linear Mixed Model), a linear mixed model for the prediction of the microbial community temporal dynamics based on the community composition at previous time stamps. MTV-LMM can identify time-dependent microbes in time series datasets, which can then be used to analyze the trajectory of the microbiome over time. We evaluated the performance of MTV-LMM on three human microbiome time series datasets, and found that MTV-LMM significantly outperforms all existing methods for microbiome time series modeling. Particularly, we demonstrate that the effect of the microbial composition in previous time points on the abundance levels of an OTU at a later time point is underestimated by a factor of at least 10 when applying previous approaches. Using MTV-LMM, we demonstrate that a considerable proportion of the human gut microbiome, both in infants and adults, has a significant time-dependent component that can be predicted based on microbiome composition in earlier time points. This suggests that microbiome composition at a given time point is a major factor in defining future microbiome composition and that this phenomenon is considerably more common than previously reported for the human gut microbiome.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3