Genetic analysis of DinG-family helicase YoaA and its interaction with replication clamp-loader protein HolC in E. coli

Author:

Sutera Vincent A.,Sass Thalia H.,Leonard Scott E.,Wu Lingling,Glass David J.,Giordano Gabriela G.,Zur Yonatan,Lovett Susan T.ORCID

Abstract

ABSTRACTThe XP-D/DinG family of DNA helicases contribute to genomic stability in all three domains of life. We investigate here the role of one of these proteins,YoaA, of Escherichia coli. In E. coli,YoaA aids tolerance to the nucleoside azidothymidine (AZT), a DNA replication inhibitor and physically interacts with a subunit of the DNA polymerase III holoenzyme, HolC. We map the residues of YoaA required for HolC interaction to its C-terminus by yeast two-hybrid analysis. We propose that this interaction competes with HolC’s interaction with HolD and the rest of the replisome;YoaA indeed inhibits growth when overexpressed, dependent on this interaction region. By gene fusions we show YoaA is repressed by LexA and induced in response to DNA damage as part of the SOS response. Induction of YoaA by AZT is biphasic with an immediate response after treatment and a slower response that peaks in the late log phase of growth. This growth-phase dependent induction by AZT is not blocked by lexA3 (Ind-), which normally negates its self-cleavage, implying another means to induce the DNA damage response that responds to the nutritional state of the cell. We propose that YoaA helicase activity increases access to the 3’ nascent strand during replication; consistent with this,YoaA appears to aid removal of potential A-to-T transversion mutations in ndk mutants, which are prone to nucleotide misincorporation. YoaA and its paralog DinG also may initiate template-switching that leads to deletions between tandem repeats in DNA.IMPORTANCEMaintaining genomic stability is crucial for all living organisms. Replication of DNA frequently encounters barriers that must be removed to complete genome duplication. Balancing DNA synthesis with its repair is critical and not entirely understood at a mechanistic level.The YoaA protein, studied here, is required for certain types of DNA repair and interacts in an alternative manner with proteins that catalyze DNA replication. YoaA is part of the well-studied LexA-regulated response to DNA damage, the SOS response. We describe an unusual feature of its regulation that promotes induction after DNA damage as the culture begins to experience starvation. Replication fork repair integrates both DNA damage and nutritional signals. We also show that YoaA affects genomic stability.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3