Author:
Zhao Peisen,Martin Chris,Ma Ke-Yue,Jiang Ning,Ben-Yakar Adela
Abstract
AbstractOur understanding of nerve regeneration can be enhanced by delineating its underlying molecular activities at single neuron resolution in small model organisms such as Caenorhabditis elegans. Existing cell isolation techniques cannot isolate regenerating neurons from the nematode. We present femtosecond laser microdissection (fs-LM), a new single cell isolation method that dissects intact cells directly from living tissue by leveraging the micron-scale precision of fs-laser ablation. We show that fs-LM facilitated sensitive and specific gene expression profiling by single cell RNA-sequencing, while mitigating the stress related transcriptional artifacts induced by tissue dissociation. Single cell RNA-sequencing of fs-LM isolated regenerating C. elegans neurons revealed transcriptional program leading to successful regeneration in wild-type animals or regeneration failure in animals lacking DLK-1/p38 kinase. The ability of fs-LM to isolate specific neurons based on phenotype of interest allowed us to study the molecular basis of regeneration heterogeneity displayed by neurons of the same type. We identified gene modules whose expression patterns were correlated with axon regrowth rate at a single neuron level. Our results establish fs-LM as a highly specific single cell isolation method ideal for precision and phenotype-driven studies.
Publisher
Cold Spring Harbor Laboratory