Abstract
AbstractIn microscopy-based drug screens, fluorescent markers carry critical information on how compounds affect different biological processes. However, practical considerations may hinder the use of certain fluorescent markers. Here, we present a deep learning method for overcoming this limitation. We accurately generated predicted fluorescent signals from other related markers and validated this new machine learning (ML) method on two biologically distinct datasets. We used the ML method to improve the selection of biologically active compounds for Alzheimer’s disease (AD) from high-content high-throughput screening (HCS). The ML method identified novel compounds that effectively blocked tau aggregation, which would have been missed by traditional screening approaches unguided by ML. The method improved triaging efficiency of compound rankings over conventional rankings by raw image channels. We reproduced this ML pipeline on a biologically independent cancer-based dataset, demonstrating its generalizability. The approach is disease-agnostic and applicable across diverse fluorescence microscopy datasets.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Image-based cell phenotyping with deep learning;Current Opinion in Chemical Biology;2021-12