Pervasive false brain connectivity from electrophysiological signals

Author:

Pascual-Marqui Roberto D.ORCID,Achermann Peter,Faber Pascal,Kinoshita Toshihiko,Kochi Kieko,Nishida Keiichiro,Yoshimura Masafumi

Abstract

1.AbstractSignals of brain electric neuronal activity, either invasively measured or non-invasively estimated, are commonly used for connectivity inference. One popular methodology assumes that the neural dynamics follow a multivariate autoregression, where the autoregressive coefficients represent the couplings among regions. If observation noise is present and ignored, as is common in practice, the estimated couplings are biased, affecting all forms of Granger-causality inference, both in time and in frequency domains. Significant nonsense coupling, i.e., nonsense connectivity, can appear when in reality there is none, since there is always observation noise in two possible forms: measurement noise, and activity from other brain regions due to volume conduction and low spatial resolution. This problem is critical, and is currently not being addressed, calling into question the validity of many Granger-causality reports in the literature. An estimation method that accounts for noise is based on an overdetermined system of high-order multivariate Yule-Walker equations, which give reduced variance estimators for the coupling coefficients of the unobserved signals. Simulation-based comparisons to other published methods are presented, demonstrating its adequate performance. In addition, simulation results are presented for a zero connectivity case with noisy observations, where the new method correctly reports no connectivity while classical analyses (as found in most software packages) report nonsense connectivity. For the sake of reproducible research, the supplementary material includes, in human readable format, all the time series data used here.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3