Author:
Gulati Gaurav,Brazil Riley J,Nelson Jason,Klaveren David van,Lundquist Christine M.,Park Jinny G.,McGinnes Hannah,Steyerberg Ewout W.,Calster Ben Van,Wessler Benjamin S.,Kent David M.
Abstract
AbstractBackgroundClinical prediction models (CPMs) are used to inform treatment decisions for the primary prevention of cardiovascular disease. We aimed to assess the performance of such CPMs in fully independent cohorts.Methods and Results63 models predicting outcomes for patients at risk of cardiovascular disease from the Tufts PACE CPM Registry were selected for external validation on publicly available data from up to 4 broadly inclusive primary prevention clinical trials. For each CPM-trial pair, we assessed model discrimination, calibration, and net benefit. Results were stratified based on the relatedness of derivation and validation cohorts, and net benefit was reassessed after updating model intercept, slope, or complete re-estimation. The median c statistic of the CPMs decreased from 0.77 (IQR 0.72-0.78) in the derivation cohorts to 0.63 (IQR 0.58-0.66) when externally validated. The validation c-statistic was higher when derivation and validation cohorts were considered related than when they were distantly related (0.67 vs 0.60, p < 0.001). The calibration slope was also higher in related cohorts than distantly related cohorts (0.69 vs 0.58, p < 0.001). Net benefit analysis suggested substantial likelihood of harm when models were externally applied, but this likelihood decreased after model updating.ConclusionsDiscrimination and calibration decrease significantly when CPMs for primary prevention of cardiovascular disease are tested in external populations, particularly when the population is only distantly related to the derivation population. Poorly calibrated predictions lead to poor decision making. Model updating can reduce the likelihood of harmful decision making, and is needed to realize the full potential of risk-based decision making in new settings.
Publisher
Cold Spring Harbor Laboratory