Inhibition of microglial GBA hampers the microglia-mediated anti-oxidant and protective response in neurons

Author:

Brunialti ElectraORCID,Villa AlessandroORCID,Mekhaeil Marianna,Mornata FedericaORCID,Vegeto ElisabettaORCID,Maggi AdrianaORCID,Di Monte Donato A.ORCID,Ciana PaoloORCID

Abstract

AbstractHomozygotic mutations in the GBA gene cause Gaucher’s disease, moreover, both patients and heterozygotic carriers have been associated with 20- to 30-fold increased risk of developing Parkinson’s disease. In homozygosis, these mutations impair the activity of β-glucocerebrosidase, the enzyme encoded by GBA, and generate a lysosomal disorder in macrophages, which changes morphology towards an engorged phenotype, considered the hallmark of Gaucher’s disease. In the brain, most of the pathological effects caused by GBA mutations have been attributed to the β-glucocerebrosidase deficit in neurons, while a microglial phenotype for these mutations has never been reported. Here, we applied the bioluminescence imaging technology, immunohistochemical and gene expression analysis to investigate the consequences of microglial β-glucocerebrosidase inhibition in the brain of reporter mice, in primary neuron/microglia co-cultures and in cell lines. Our data demonstrate the existence of a novel mechanism by which microglia sustain the antioxidant/detoxifying response mediated by the nuclear factor erythroid 2-related factor 2 in neurons. The central role played by microglia in this neuronal response in vivo was proven by pharmacological depletion of the lineage in the brain, while co-cultures experiments provided insight on the nature of this cell-to-cell communication showing that this mechanism requires a direct microglia-to-neuron contact supported by functional actin structures. Pharmacological inhibition of microglial β-glucocerebrosidase was proven to induce morphological changes, turn on an anti-inflammatory/repairing pathway and hinder the microglia ability to activate the anti-oxidant/detoxifying response, thus increasing the neuronal susceptibility to neurotoxins.Altogether, our data suggest that microglial β-glucocerebrosidase inhibition impairs microglia-to-neuron communication increasing the sensitivity of neurons to oxidative or toxic insults, thus providing a possible mechanism for the increased risk of neurodegeneration observed in carriers of GBA mutations.Graphical AbstractIn BriefMicroglia, through actin-dependent structures, contact neurons and induce a detoxification response by increasing the NFE2L2 signalling pathway. Inhibition of GCase activity by CBE treatment produces a morpho-functional change in microglia cells hampering the neuroprotective microglia-neuron communication thus inducing a phenotype in dopaminergic neurons characterized by increased susceptibility to oxidative stress or toxic insults.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3