Synthqa - Hierarchical Machine Learning-Based Protein Quality Assessment

Author:

Korovnik Mikhail,Hippe Kyle,Hou Jie,Si DongORCID,Kishaba Kiyomi,Cao RenzhiORCID

Abstract

ABSTRACTMotivationIt has been a challenge for biologists to determine 3D shapes of proteins from a linear chain of amino acids and understand how proteins carry out life’s tasks. Experimental techniques, such as X-ray crystallography or Nuclear Magnetic Resonance, are time-consuming. This highlights the importance of computational methods for protein structure predictions. In the field of protein structure prediction, ranking the predicted protein decoys and selecting the one closest to the native structure is known as protein model quality assessment (QA), or accuracy estimation problem. Traditional QA methods don’t consider different types of features from the protein decoy, lack various features for training machine learning models, and don’t consider the relationship between features. In this research, we used multi-scale features from energy score to topology of the protein structure, and proposed a hierarchical architecture for training machine learning models to tackle the QA problem.ResultsWe introduce a new single-model QA method that incorporates multi-scale features from protein structures, utilizes the hierarchical architecture of training machine learning models, and predicts the quality of any protein decoy. Based on our experiment, the new hierarchical architecture is more accurate compared to traditional machine learning-based methods. It also considers the relationship between features and generates additional features so machine learning models can be trained more accurately. We trained our new tool, SynthQA, on the CASP dataset (CASP10 to CASP12), and validated our method on 33 targets from the latest CASP 14 dataset. The result shows that our method is comparable to other state-of-the-art single-model QA methods, and consistently outperforms each of the 14 used features.Availabilityhttps://github.com/Cao-Labs/SynthQA.gitContactcaora@plu.edu

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3