Abstract
AbstractSynaptic inputs that target distal regions of neuronal dendrites can often generate local dendritic spikes that can amplify synaptic depolarization, induce synaptic plasticity, and enhance neuronal output. However, distal dendritic spikes are subject to significant attenuation by dendritic cable properties, and often produce only a weak subthreshold depolarization of the soma. Nonetheless, such spikes have been implicated in memory storage, sensory perception and place field formation. How can such a weak somatic response produce such powerful behavioral effects? Here we use dual dendritic and somatic recordings in acute hippocampal slices to reveal that dendritic spike propagation, but not spike initiation, is strongly enhanced when the somatic resting potential is depolarized, likely as a result of increased inactivation of A-type K+ channels. Somatic depolarization also facilitates the induction of a form of dendritic spike driven heterosynaptic plasticity that enhances memory specificity. Thus, the effect of somatic membrane depolarization to enhance dendritic spike propagation and long-term synaptic plasticity is likely to play an important role in hippocampal-dependent spatial representations as well as learning and memory.
Publisher
Cold Spring Harbor Laboratory