Tapping into the aging brain: In vivo microdialysis reveals mirroring pathology between preclinical models and patients with Alzheimer’s disease

Author:

Bjorkli C.,Louet C.,Flo T.H.ORCID,Hemler M.,Sandvig A.,Sandvig I.

Abstract

SUMMARYPreclinical models of Alzheimer’s disease (AD) can provide valuable insights into the onset and progression of the disease, such as changes in concentrations of amyloid-β (Aβ) and tau in cerebrospinal fluid (CSF). However, such models are currently underutilized due to limited advancement in techniques that allow for longitudinal monitoring of CSF akin to methods employed in AD patients. An elegant way to understand the biochemical environment in the diseased brain is intracerebral microdialysis, a method that has until now been limited to short-term observations, or snapshots, of the brain microenvironment. Our novel push-pull microdialysis method in AD mice permits in vivo longitudinal monitoring of dynamic changes of Aβ and tau in CSF and allows for better translational understanding of CSF biomarkers. Specifically, we demonstrate that CSF concentrations of Aβ and tau along disease progression in transgenic mice mirror what is observed in patients, with a decrease in CSF Aβ observed when plaques are deposited, and an increase in CSF tau once tau pathology is present in the brain. We found that a high molecular weight cut-off membrane allowed for simultaneous sampling of Aβ and tau, comparable to lumbar puncture CSF collection in patients. We furthermore provide specific recommendations for optimal application of our novel microdialysis method, such as achieving optimal recovery of analytes, which depends heavily on the flow rate of perfusion, probe properties and perfusate composition. Our approach can further advance AD research by following evolving neuropathology along the disease cascade via consecutive sampling from the same animal, and can additionally be used to administer pharmaceutical compounds and assess their efficacy in treating AD.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3