Sex-dependent gene regulation of human atherosclerotic plaques by DNA methylation and transcriptome integration points to smooth muscle cell involvement in women

Author:

Hartman Robin J. G.,Siemelink Marten A.,Haitjema Saskia,Dekkers Koen F.,Slenders Lotte,Boltjes Arjan,Mokry Michal,Timmerman Nathalie,de Borst Gert J.,Heijmans Bastiaan T.ORCID,Asselbergs Folkert W.,Pasterkamp Gerard,van der Laan Sander W.ORCID,den Ruijter Hester M.ORCID

Abstract

AbstractSex differences are evident in the clinical presentation and underlying histology of atherosclerotic disease with women developing more stable atherosclerotic lesions than men. It is unknown whether this is explained by sex differences in gene regulation in cellular compartments of atherosclerotic plaques. To study sex differences in gene regulation we performed genome-wide DNA methylation and transcriptomics analysis on plaques of 485 carotid endarterectomy patients (31% female). Sex-differential DNA methylation at 4,848 sites in the autosome was enriched for cell-fate commitment and developmental processes, and its deconvolution predicted more smooth muscle cells in females, as compared to more immune cells in males. RNA-sequencing of the same plaques corroborated the sex differences in DNA methylation predicted cell-types, in which genes that were higher expressed in females were enriched for TGF-beta signaling and extracellular matrix biology. In addition, female-biased genes were enriched for targeting by regulatory loci based on sex differential methylation. Lastly, by using single-cell RNA sequencing we showed that these female-biased genes are mostly expressed in smooth muscle cells, and higher expressed in smooth muscle cells from female (predominantly stable) plaques as compared to male (relatively unstable) plaques. Our approach identified female-biased genes in smooth muscle cells in fibrous atherosclerotic plaques. This points towards new mechanisms in smooth muscle cell biology of stable atherosclerotic plaques and offers new directions for research to develop new sex-specific therapeutics for atherosclerotic disease.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3