Cholinergic signalling in the forebrain controls microglial phenotype and responses to systemic inflammation

Author:

Nazmi Arshed,Griffin Eadaoin W.,Field Robert H.,Doyle Sean,Hennessy Edel,O’Donnell Martin,Rehill Aisling,McCarthy Anthony,Healy Daire,Doran Michelle M.,Lowry John P.,Cunningham Colm

Abstract

Abstract(250)Loss of basal forebrain cholinergic projections occurs in Alzheimer’s disease, frontotemporal dementia and in aging. Moreover, nicotinic stimulation is anti-inflammatory in macrophages and microglia but how loss of basal forebrain acetylcholine impacts on microglial phenotype is poorly understood. Here we hypothesized that endogenous ACh maintains homeostatic microglial phenotype and that neurodegeneration-evoked loss of ACh tone, triggers microglial activation. Using the specific immunotoxin, mu-p75NTR-saporin, we performed partial lesions of the basal forebrain cholinergic nuclei, medial septum and ventral diagonal band. We examined microglial phenotype in the hippocampus, the major projection area for these nuclei, using bulk RNA preparations, Flow cytometry-sorted microglial cells, immunohistochemistry and ELISA to examine responses to cholinergic withdrawal and acute responses to subsequent systemic inflammation with LPS. Basal forebrain cholinergic degeneration elicited lasting activation of microglia in the hippocampus, showing suppression of Sall1 and persistent elevation of Trem2, Clec7a, Itgax and complement genes proportionate to Chat loss. These primed microglia showed exaggerated IL-1β responses to systemic LPS challenge. In normal animals LPS evoked acute increases in extracellular choline, a proxy for ACh release, and this response was lost in lesioned animals. Restoration of basal cholinergic signalling via serial treatments with the nicotinic agonist PNU282,987 resulted in reversion to the homeostatic microglial phenotype and prevented exaggerated responses to acute systemic inflammation. The data indicate that neurodegeneration-evoked loss of cholinergic tone, triggers microglial activation via impaired microglial nicotinic signalling and leaves these microglia more vulnerable to secondary inflammatory insults. The data have implications for neuroinflammation during aging and neurodegeneration and for responses to sepsis and systemic inflammation.

Publisher

Cold Spring Harbor Laboratory

Reference77 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3