Dynamics and turnover of memory CD8 T cell responses following yellow fever vaccination

Author:

Zarnitsyna Veronika I.ORCID,Akondy Rama S.ORCID,Ahmed Hasan,McGuire Don J.,Zarnitsyn Vladimir G.ORCID,Moore MiaORCID,Johnson Philip L. F.,Ahmed Rafi,Li Kelvin,Hellerstein Marc,Antia Rustom

Abstract

AbstractUnderstanding how immunological memory lasts a lifetime requires quantifying changes in the number of memory cells as well as how their division and death rates change over time. We address these questions by using a statistically powerful mixed-effects differential equations framework to analyze data from two human studies that follow CD8 T cell responses to the yellow fever vaccine (YFV-17D). Models were first fit to the frequency and division rates of YFV-specific memory CD8 T cells 42 days to 1 year post-vaccination. A different dataset, on the loss of YFV-specific CD8 T cells over three decades, was used to assess out of sample predictions of our models. The commonly used exponential and bi-exponential decline models performed relatively poorly. Models with the cell loss following a power law (exactly or approximately) were most predictive. Notably, using only the first year of data, these models accurately predicted T cell frequencies up to 30 years post-vaccination. Our analyses suggest that division rates of these cells drop and plateau at a low level (0.001 per day, ~double estimates for naive T cells) within one year following vaccination, whereas death rates continue to decline for much longer. Our results show that power laws can be predictive for T cell memory, a finding that may be useful for vaccine evaluation and epidemiological modeling. Moreover, since power laws asymptotically decline more slowly than any exponential decline, our results help explain the longevity of immune memory phenomenologically.Author summaryImmunological memory, generated in response to infection or vaccination, may provide complete or partial protection from antigenically similar infections for the lifetime. Memory CD8 T cells are important players in protection from secondary viral infections but quantitative understanding of their dynamics in humans is limited. We analyze data from two studies where immunization with the yellow fever virus vaccine (YFV-17D) generates a mild acute infection and long-term memory. We find that: (i) the division rate of YFV-17D-specific CD8 T cells drops and stabilizes at ~ 0.1% per day during the first year following vaccination whereas the death rate declines more gradually, and (ii) the number of these cells declines approximately in accordance with a power law (∝time−0.82) for at least several decades following vaccination.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3