Anaerobic Benzene Biodegradation Linked to Growth of Highly Specific Bacterial Clades

Author:

Toth Courtney R. A.ORCID,Luo Fei,Bawa Nancy,Webb Jennifer,Guo Shen,Dworatzek Sandra,Edwards Elizabeth A.ORCID

Abstract

ABSTRACTReliance on bioremediation to remove benzene from anoxic environments has proven risky for decades but for unknown reasons. Years of research have revealed a strong link between anaerobic benzene biodegradation and the enrichment of highly specific microbes, namely Thermincola in the family Peptococcaceae and the deltaproteobacterial Candidate Sva0485 clade. Using aquifer material from Canadian Forces Base Borden, we compared five bioremediation approaches in batch microcosms. Under conditions simulating natural attenuation or sulfate biostimulation, benzene was not degraded after 1-2 years of incubation and no enrichment of known benzene-degrading microbes occurred. In contrast, nitrate-amended microcosms reported benzene biodegradation coincident with significant growth of Thermincola spp., along with a functional gene presumed to catalyze anaerobic benzene carboxylation (abcA). Inoculation with 2.5% of a methanogenic benzene-degrading consortium containing Sva0485 (Deltaproteobacteria ORM2) resulted in benzene biodegradation in the presence of sulfate or under methanogenic conditions. The presence of other hydrocarbon co-contaminants decreased rates of benzene degradation by a factor of 2-4. Tracking the abundance of the abcA gene and 16S rRNA genes specific for benzene-degrading Thermincola and Sva0485 is recommended to monitor benzene bioremediation in anoxic groundwater systems to further uncover growth rate limiting conditions for these two intriguing phylotypes.SYNOPSISAnaerobic benzene biodegradation was accelerated by biostimulation with nitrate or by bioaugmentation under methanogenic or sulfate-reducing conditions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3