A conserved role of Parkinson-associated DJ-1 metabolites in sperm motility, mitosis, and embryonic development

Author:

Bour Susanne,Dening Yanina,Balbach MelanieORCID,Poser InaORCID,Álvarez Inés Ramírez,den Haan HelenaORCID,Kluge Christoph,Naumann Ronald,Oertel Reinhard,Alba-Alejandre Irene,Accardi DavideORCID,Stief Christian G.ORCID,Dieterich MarianneORCID,Falkai PeterORCID,Böckmann Rainer A.ORCID,Pérez-Sánchez Horacio,Hyman Anthony A.,Trottmann MatthiasORCID,Pan-Montojo FranciscoORCID

Abstract

AbstractFertility rates in the developing world have dramatically dropped in the last decades. This drop is likely due to a decline in sperm quality and women having children at older ages. Loss of function mutations in DJ-1, a Parkinson’s associated gene, are linked to alterations in multiple cellular processes such as mitochondrial activity, ROS production or sperm motility and lead to an early onset of Parkinson’s disease and male infertility in humans and other species. Glycolate (GA) and D-lactate (DL), products of DJ-1 glyoxalase activity, sustain mitochondrial function and protect against environmental aggressions. We, therefore, tested whether these substances could also have a rescue effect on these phenotypes. Here, we show that DJ-1 loss of function not only affects sperm motility but also leads to defects in mitosis and an age-dependent increase in the abortion rate. Remarkably, whereas DL was only able to rescue embryonic lethality in C. elegans, GA rescued these phenotypes in all model systems tested and even increased sperm motility in wild-type sperm. These positive effects seem to be mediated through an increase in NAD(P)H production and the regulation of intracellular calcium. These findings not only strongly suggest GA as a new therapeutic candidate to improve male and female fertility but also show its potential to treat diseases associated with a decline in mitochondrial function or to improve mitochondrial function in aging.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3