Assisted assembly of bacteriophage T7 core components for genome translocation across the bacterial envelope

Author:

Pérez-Ruiz MarORCID,Pulido-Cid Mar,Luque-Ortega Juan Román,Valpuesta José MaríaORCID,Cuervo AnaORCID,Carrascosa José L.

Abstract

ABSTRACTIn most bacteriophages, the genome transport across bacterial envelopes is carried out by the tail machinery. In Podoviridae viruses, where the tail is not long enough to traverse the bacterial wall, it has been postulated that viral core proteins are translocated and assembled into a tube within the periplasm. T7 bacteriophage, a member from the Podoviridae family, infects E. coli gram-negative bacteria. Despite extensive studies, the precise mechanism by which this virus translocates its genome remains unknown. Using cryo-electron microscopy, we have resolved the structure two different assemblies of the T7 bacteriophage DNA translocation complex, built by core proteins gp15 and gp16. Gp15 alone forms a partially folded hexamer, which is further assembled by interaction with gp16, resulting in a tubular structure with dimensions compatible with traversing the bacterial envelope and a channel that allows DNA passage. The structure of the gp15-gp16 complex also shows the location in gp16 of a canonical transglycosylase motif essential in the bacterial peptidoglycan layer degradation. Altogether these results allow us to propose a model for the assembly of the core translocation complex in the periplasm, which helps in the understanding at the molecular level of the mechanism involved in the T7 viral DNA release in the bacterial cytoplasm.SIGNIFICANCE STATEMENTT7 bacteriophage infects E. coli bacteria. During this process, the DNA transverses the bacterial cell wall, but the precise mechanism used by the virus remains unknown. Previous studies suggested that proteins found inside the viral capsid (core proteins) disassemble and reassemble in the bacterial periplasm to form a DNA translocation channel. In this article we solved by cryo-electron microscopy two different assemblies of the core proteins that reveal the steps followed by them to finally form a tube large enough to traverse the periplasm, as well as the location of the transglycosylase enzyme involved in peptidoglycan degradation. These findings confirm previously postulated hypothesis and make experimentally visible the mechanism of DNA transport trough the bacterial wall.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3