Abstract
AbstractQuantitative traits such as human height are measurable phenotypes that show continuous variation over a wide phenotypic range. Enormous effort has recently been put into determining the genetic influences on a variety of quantitative traits, including human genetic diseases, with mixed success. We identified a quantitative trait in a tractable model system, the GAL pathway in yeast, which controls the uptake and metabolism of the sugar galactose. GAL pathway activation depends both on galactose concentration and on the concentrations of competing, preferred sugars such as glucose. Natural yeast isolates show substantial variation in the behavior of the pathway. All studied yeast strains exhibit bimodal responses relative to external galactose concentration, i.e. a set of galactose concentrations existed at which both GAL-induced and GAL-repressed subpopulations were observed. However, these concentrations differed in different strains. We built a mechanistic model of the GAL pathway and identified parameters that are plausible candidates for capturing the phenotypic features of a set of strains including standard lab strains, natural variants, and mutants. In silico perturbation of these parameters identified variation in the intracellular galactose sensor, Gal3p, the negative feedback node within the GAL regulatory network, Gal80p, and the hexose transporters, HXT, as the main sources of the bimodal range variation. We were able to switch the phenotype of individual yeast strains in silico by tuning parameters related to these three elements. Determining the basis for these behavioral differences may give insight into how the GAL pathway processes information, and into the evolution of nutrient metabolism preferences in different strains. More generally, our method of identifying the key parameters that explain phenotypic variation in this system should be generally applicable to other quantitative traits.Author summaryMicrobes adopt elaborate strategies for the preferred uptake and use of nutrients to cope with complex and fluctuating environments. As a result, yeast strains originating from different ecological niches show significant variation in the way they induce genes in the galactose metabolism (GAL) pathway in response to nutrient signals. To identify the mechanistic sources of this variation, we built a mathematical model to simulate the dynamics of the galactose metabolic regulation network, and studied how parameters with different biological implications contributed to the natural variation. We found that variations in the behavior of the galactose sensor Gal3p, the negative feedback node Gal80p, and the hexose transporters HXT were critical elements in the GAL pathway response. Tuning single parameters in silico was sufficient to achieve phenotype switching between different yeast strains. Our computational approach should be generally useful to help pinpoint the genetic and molecular bases of natural variation in other systems.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献