Transcriptome Analysis of Chloride Intracellular Channel Knockdown in Drosophila Identifies Oxidation-Reduction Function as Possible Mechanism of Altered Sensitivity to Ethanol Sedation

Author:

Weston Rory M.,Schmitt Rebecca E.ORCID,Grotewiel Mike,Miles Michael F.ORCID

Abstract

AbstractChloride intracellular channels (CLICs) are a unique family of evolutionarily conserved metamorphic proteins, switching between stable conformations based on redox conditions. CLICs have been implicated in a wide variety biological processes including ion channel activity, apoptosis, membrane trafficking, and enzymatic oxidoreductase activity. Understanding the molecular mechanisms by which CLICs engage in these activities is an area of active research. Here, the sole Drosophila melanogaster ortholog, Clic, was targeted for RNAi knockdown to identify genes and biological processes associated with Clic expression. Clic knockdown had a substantial impact on global transcription, altering expression of over 9% of transcribed Drosophila genes. Overrepresentation analysis of differentially expressed genes identified enrichment of 23 Gene Ontology terms including Cytoplasmic Translation, Oxidation-Reduction Process, Heme Binding, Membrane, Cell Junction, and Nucleolus. The top term, Cytoplasmic Translation, was enriched almost exclusively with downregulated genes. Drosophila Clic and vertebrate ortholog Clic4 have previously been tied to ethanol sensitivity and ethanol-regulated expression. Clic knockdown-responsive genes from the present study were found to overlap significantly with gene sets from 4 independently published studies related to ethanol exposure and sensitivity in Drosophila. Bioinformatic analysis of genes shared between these studies revealed an enrichment of genes related to amino acid metabolism, protein processing, oxidation-reduction processes, and lipid particles among others. To determine whether the modulation of ethanol sensitivity by Clic may be related to co-regulated oxidation-reduction processes, we evaluated the effect of hyperoxia on ethanol sedation in Clic knockdown flies. Consistent with previous findings, Clic knockdown reduced acute ethanol sedation sensitivity in flies housed under nomoxia. However, this effect was reversed by exposure to hyperoxia, suggesting a common set of molecular-genetic mechanism may modulate each of these processes. This study suggests that Drosophila Clic has a major influence on regulation of oxidative stress signaling and that this function overlaps with the molecular mechanisms of acute ethanol sensitivity in the fly.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3