Training for object recognition with increasing spatial frequency: A comparison of deep learning with human vision

Author:

Avberšek Lev Kiar,Zeman Astrid,Op de Beeck Hans P.

Abstract

AbstractThe ontogenetic development of human vision, and the real-time neural processing of visual input, both exhibit a striking similarity – a sensitivity towards spatial frequencies that progress in a coarse-to-fine manner. During early human development, sensitivity for higher spatial frequencies increases with age. In adulthood, when humans receive new visual input, low spatial frequencies are typically processed first before subsequently guiding the processing of higher spatial frequencies. We investigated to what extent this coarse-to-fine progression might impact visual representations in artificial vision and compared this to adult human representations. We simulated the coarse-to-fine progression of image processing in deep convolutional neural networks (CNNs) by gradually increasing spatial frequency information during training. We compared CNN performance, after standard and coarse-to-fine training, with a wide range of datasets from behavioural and neuroimaging experiments. In contrast to humans, CNNs that are trained using the standard protocol are very insensitive to low spatial frequency information, showing very poor performance in being able to classify such object images. By training CNNs using our coarse-to-fine method, we improved the classification accuracy of CNNs from 0% to 32% on low-pass filtered images taken from the ImageNet dataset. When comparing differently trained networks on images containing full spatial frequency information, we saw no representational differences. Overall, this integration of computational, neural, and behavioural findings shows the relevance of the exposure to and processing of input with a variation in spatial frequency content for some aspects of high-level object representations.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3