Abstract
ABSTRACTBackgroundFour models are commonly used to adjust for energy intake when estimating the causal effect of a dietary component on an outcome; (1) the ‘standard model’ adjusts for total energy intake, (2) the ‘energy partition model’ adjusts for remaining energy intake, (3) the ‘nutrient density model’ rescales the exposure as a proportion of total energy, and (4) the ‘residual model’ indirectly adjusts for total energy by using a residual. It remains underappreciated that each approach evaluates a different estimand and only partially accounts for proxy confounding by common dietary causes.ObjectiveTo clarify the implied causal estimand and interpretation of each model and evaluate their performance in reducing dietary confounding.DesignSemi-parametric directed acyclic graphs and Monte Carlo simulations were used to identify the estimands and interpretations implied by each model and explore their performance in the absence or presence of dietary confounding.ResultsThe ‘standard model’ and the mathematically identical ‘residual model’ estimate the average relative causal effect (i.e., a ‘substitution’ effect) but provide biased estimates even in the absence of confounding. The ‘energy partition model’ estimates the total causal effect but only provides unbiased estimates in the absence of confounding or when all other nutrients have equal effects on the outcome. The ‘nutrient density model’ has an obscure interpretation but attempts to estimate the average relative causal effect rescaled as a proportion of total energy intake. Accurate estimates of both the total and average relative causal effects may instead be estimated by simultaneously adjusting for all dietary components, an approach we term the ‘all-components model’.ConclusionLack of awareness of the estimand differences and accuracy of the four modelling approaches may explain some of the apparent heterogeneity among existing nutritional studies and raise serious questions regarding the validity of meta-analyses where different estimands have been inappropriately pooled.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献