Targeting conserved viral virulence determinants by single domain antibodies to block SARS-CoV2 infectivity

Author:

Singh Sudhakar,Dahiya Surbhi,Singh Yuviana J.,Beeton Komal,Jain Ayush,Sarkar Roman,Dubey Abhishek,Tehseen Syed Azeez,Sehrawat Sharvan

Abstract

AbstractWe selected SARS-CoV2 specific single domain antibodies (sdAbs) from a previously constructed phage display library using synthetic immunogenic peptides of the virus spike (S) protein as bait. The sdAbs targeting the cleavage site (CS) and the receptor binding domain (RBD) in S protein efficiently neutralised the infectivity of a pseudovirus expressing SARS-CoV2 S protein. Anti-CS sdAb blocked the virus infectivity by inhibiting proteolytic processing of SARS-CoV2 S protein. Both the sdAbs retained characteristic structure within the pH range of 2 to 12 and remained stable upto 65°C. Furthermore, structural disruptions induced by a high temperature in both the sdAbs were largely reversed upon their gradual cooling and the resulting products neutralised the reporter virus. Our results therefore suggest that targeting CS in addition to the RBD of S protein by sdAbs could serve as a viable option to reduce SARS-CoV2 infectivity and that proteolytic processing of the viral S protein is critical for infection.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3