Author:
Collora Jack A.,Pinto-Santini Delia,Pasalar Siavash,Ravindra Neal,Ganoza Carmela,Lama Javier,Alfaro Ricardo,Chiarella Jennifer,Spudich Serena,van Dijk David,Duerr Ann,Ho Ya-Chi
Abstract
AbstractDespite antiretroviral therapy (ART), HIV-1 persists in proliferating T cell clones that increase over time. To understand whether early ART affects HIV-1 persistence in vivo, we performed single-cell ECCITE-seq and profiled 89,279 CD4+ T cells in paired samples during viremia and after immediate versus delayed ART in six people in the randomized interventional Sabes study. We found that immediate ART partially reverted TNF responses while delayed ART did not. Antigen and TNF responses persisted despite immediate ART and shaped the transcriptional landscape of CD4+ T cells, HIV-1 RNA+ cells, and T cell clones harboring them (cloneHIV-1). Some HIV-1 RNA+ cells reside in the most clonally expanded cytotoxic T cell populations (GZMB and GZMK Th1 cells). CloneHIV-1+ were larger in clone size, persisted despite ART, and exhibited transcriptional signatures of antigen, cytotoxic effector, and cytokine responses. Using machine-learning algorithms, we identified markers for HIV-1 RNA+ cells and cloneHIV-1+ as potential therapeutic targets. Overall, by combining single-cell immune profiling and T cell expansion dynamics tracking, we identified drivers of HIV-1 persistence in vivo.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献