A mRNA-LNP vaccine against Dengue Virus elicits robust, serotype-specific immunity

Author:

Wollner Clayton J.,Richner Michelle,Hassert Mariah A.,Pinto Amelia K.ORCID,Brien James D.,Richner Justin M.ORCID

Abstract

ABSTRACTDengue virus (DENV) is the most common vector-borne viral disease with nearly 400 million worldwide infections each year concentrated in the tropical and subtropical regions of the world. Severe dengue complications are often associated with a secondary heterotypic infection of one of the four circulating serotypes. In this scenario, humoral immune responses targeting cross-reactive, poorly-neutralizing epitopes can lead to increased infectivity of susceptible cells via antibody-dependent enhancement (ADE). In this way, antibodies produced in response to infection or vaccination are capable of contributing to enhanced disease in subsequent infections. Currently, there are no available therapeutics to combat DENV disease, and there is an urgent need for a safe and efficacious vaccine. Here, we developed a nucleotide-modified mRNA vaccine encoding for the membrane and envelope structural proteins from DENV serotype 1 encapsulated into lipid nanoparticles (prM/E mRNA-LNP). Vaccination of mice elicited robust antiviral immune responses comparable to viral infection with high levels of neutralizing antibody titers and antiviral CD4+ and CD8+ T cells. Immunocompromised AG129 mice vaccinated with the prM/E mRNA-LNP vaccine were protected from a lethal DENV challenge. Vaccination with either a wild-type vaccine, or a vaccine with mutations in the immunodominant fusion-loop epitope, elicited equivalent humoral and cell mediated immune responses. Neutralizing antibodies elicited by the vaccine were sufficient to protect against a lethal challenge. Both vaccine constructs demonstrated serotype specific immunity with minimal serum cross-reactivity and reduced ADE compared to a live DENV1 viral infection.IMPORTANCEWith 400 million worldwide infections each year, dengue is the most common vector-born viral disease. 40% of the world’s population is at risk with dengue experiencing consistent geographic spread over the years. With no therapeutics available and vaccines performing sub optimally, the need for an effective dengue vaccine is urgent. Here we develop and characterize a novel mRNA vaccine encoding for the dengue serotype 1 envelope and premembrane structural proteins that is delivered via a lipid nanoparticle. Our DENV1 prM/E mRNA-LNP vaccine induces neutralizing antibody and cellular immune responses in immunocompetent mice and protects an immunocompromised mouse from a lethal DENV challenge. Existing antibodies against dengue can enhance subsequent infections via antibody-dependent enhancement. Importantly our vaccine only induced serotype specific immune responses and did not induce ADE.

Publisher

Cold Spring Harbor Laboratory

Reference55 articles.

1. Global spread of dengue virus types: mapping the 70 year history

2. The global distribution and burden of dengue

3. World Health Organization. Dengue and severe dengue.

4. Immune-mediated cytokine storm and its role in severe dengue;Semin Immunopathol,2017

5. 2009. Dengue: guidelines for diagnosis, treatment, prevention, and controlNew ed. TDR : World Health Organization, Geneva.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3