Abstract
AbstractThe thermotolerant multidrug-resistant ascomycete Candida auris rapidly emerged since 2009 and simultaneously evolved in different geographical zones worldwide, causing superficial as well as systemic infections. The molecular events that orchestrated this sudden emergence of the killer fungus remain mostly elusive. Here, we identify centromeres in C. auris and related species, using a combined approach of chromatin immunoprecipitation and comparative genomic analyses. We find that C. auris and multiple other species in the Clavispora/Candida clade shared a conserved small regional centromere landscape lacking pericentromeres. Further, a centromere inactivation event led to karyotypic alterations in this species complex. Inter-species genome analysis identified several structural chromosomal changes around centromeres. In addition, centromeres are found to be rapidly evolving loci among the different geographical clades of the same species of C. auris. Finally, we reveal an evolutionary trajectory of the unique karyotype associated with clade 2 that consists of the drug susceptible isolates of C. auris.
Publisher
Cold Spring Harbor Laboratory