Contraction-expansion dynamics of reef species in response to sea-level changes

Author:

Hoareau TB,Pretorius PCORCID

Abstract

AbstractThe contraction-expansion model (CEM) describes the dynamics of species that survived in refugia during the last glacial maximum (LGM) and expanded their range when environmental conditions slowly improved from the Late Glacial through to the Holocene. The CEM has been proposed to describe the dynamics of reef species in response to sea-level fluctuations from a range of disciplines, but genetic inferences rather suggest stable population sizes since the last glacial period. Here, we address this paradox by providing a new model of modern reef development, by assessing the effect of LGM bottlenecks using genetic simulations, and by using a survey of the literature on reef species to compile both estimates of times to expansion and applied rates of molecular evolution. Using previously published radiocarbon dates of core data, we propose a synthetic model for the dynamics of modern coral reefs in the Indo-Pacific region. This model describes both an initiation at 9.9 ka and subsequent development that confirms a strong influence of sea-level fluctuations on reef dynamics. Simulations based on mtDNA datasets showed that pre-LGM genetic signatures of expansion are lost. Recent literature shows that, although genetic expansions of tropical marine species are frequent (>95%), the onset of these expansions is old (median ~110 ka), which indicates that most populations have remained stable since before the LGM. These pre-LGM expansions are explained by the low mutation rates (1.66% changes/site/Myr) known to be inadequate to calibrate time at population level. Specific calibrations should help solve the paradox and generalise the CEM for reef species.

Publisher

Cold Spring Harbor Laboratory

Reference41 articles.

1. Below the Mesophotic;Scientific Reports,2018

2. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis;Plos Computational Biology,2019

3. Coral reef response to Quaternary sea‐level and environmental changes: State of the science

4. Sea-level controls on the post-glacial development of the Great Barrier Reef, Queensland

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3