HarnessingEscherichia colifor bio-based production of formate under pressurized H2and CO2gases

Author:

Roger Magali,Reed Tom C.,Sargent FrankORCID

Abstract

ABSRACTEscherichia coliis gram-negative bacterium that is a workhorse of the biotechnology industry. The organism has a flexible metabolism and can perform a mixed-acid fermentation under anaerobic conditions. Under these conditionsE. colisynthesises a formate hydrogenlyase isoenzyme (FHL-1) that can generate molecular hydrogen and carbon dioxide from formic acid. The reverse reaction is hydrogen-dependent carbon dioxide reduction (HDCR), which has exciting possibilities in bio-based carbon capture and storage if it can be harnessed. In this study, anE. colihost strain was optimised for the production of formate from H2and CO2during bacterial growth in a pressurised batch bioreactor. A host strain was engineered that constitutively produced the FHL-1 enzyme and incorporation of tungsten in to the enzyme, in place of molybdenum, helped poise the reaction in the HDCR direction. The engineeredE. colistrain showed an ability to grow under fermentative conditions while simultaneously producing formate from gaseous H2and CO2supplied in the bioreactor. However, while a sustained pressure of 10 bar N2had no adverse effect on cell growth, when the culture was placed at or above 4 bar pressure of a H2:CO2mixture then a clear growth deficiency was observed. Taken together, this work demonstrates that growing cells can be harnessed to hydrogenate carbon dioxide and provides fresh evidence that the FHL-1 enzyme may be intimately linked with bacterial energy metabolism.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3