Abstract
AbstractSeasonal timing of reproduction in voles is driven by photoperiod. Here we hypothesize that a negative energy balance can modify spring-programmed photoperiodic responses in the hypothalamus, controlling reproductive organ development. We manipulated energy balance by the ‘work-for-food’ protocol, in which voles were exposed to increasing levels of food scarcity at different ambient temperatures under long photoperiod. We reveal that common (Microtus arvalis) and tundra voles (Microtus oeconomus), reduce photoperiodic induced pars tuberalis thyroid-stimulating hormone β-subunit (Tshβ) expression to inhibit gonadal development when food is scarce. Reduction in gonadal size is more pronounced in tundra voles, in which the hypothalamic Kisspeptin (Kiss1) system seems involved in downregulating gonadal development, especially in males. Low temperature additionally leads to decreased hypothalamic RF-amide related peptide (Rfrp3) levels, which may facilitate further suppression of gonadal growth. Shutting off the photoperiodic-axis when food is scarce in spring may be an adaptive response to save energy, leading to delayed reproductive organ development until food resources are sufficient for reproduction, lactation and offspring survival. Defining the mechanisms through which metabolic cues modify photoperiodic responses will be important for a better understanding of how environmental cues impact reproduction.Summary statementThis study provides a better understanding of the molecular mechanism through which metabolic cues can modify photoperiodic responses, to adaptively adjust timing of reproductive organ development
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献