Introducing Novel Molecular-based Method for Quantification of Homologous Recombination Efficiency

Author:

Dibbasey Mustapha,Gaymes Terry

Abstract

AbstractBackgroundHomologous recombination (HR) pathway is a DNA double-stranded breaks repair pathway well-known for its high level of accuracy. Low HR pathway efficiency clinically known as homologous recombination deficiency (HRD) was identified in some cancers such as breast and ovarian cancers and studies have reported the sensitivity of HRD cancer cells to DNA repair inhibitors such as Olaparib. However, current techniques including immunofluorescence-based technique are qualitative-based, hence lack sensitivity to determine the functionality of HR pathway. Additionally, some of the techniques including gene expression arrays require expression study of wide range genes involve in HR pathway, which is not cost-effective. The aim of the study is to optimise a PCR-based assay (Norgen’s Homologous Recombination kit) that can be employed to quantitate HR efficiency in cells, which accurately reflects the functional status of HR pathway.Methods and FindingsThe kit has two test plasmids (dl-1 and dl-2) with partial deletions in the LacZ gene and the plasmids are generated from modification of pUC19. HR-proficient (HeLa and AsPC-1) and HR-deficient (CAPAN-1 cells) cancer cell lines were transfected with the two plasmids to generate functional LacZ gene (i.e. recombinant product). The recombinant product was quantified by real-time PCR. Although recombinant product was generated in all the cell lines, our real-time PCR demonstrated a high quantity of recombinant product in HeLa cell line whilst low quantity in CAPAN-1 and AsPC-1 cell lines. The quantity of recombinant product generated and quantified reflects HR pathway efficiency.ConclusionOverall, the results have provided some evidence that the PCR-based kit can be suitably employed for quantification of HR efficiency provided appropriate transfection method and reagent are used. However, further study is required to confirm HR efficiency status of AsPC-1 cells to ascertain the low HR efficiency detected by the kit in these cells.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3