Endothelial NRP2 influences angiogenesis by regulating actin pattern development and α5-integrin-p-FAK complex recruitment to assembling adhesion sites

Author:

Benwell Christopher J,Taylor James AGE,Robinson Stephen DORCID

Abstract

AbstractThe ability to form a variety of cell-matrix connections is crucial for angiogenesis to take place. Without stable anchorage to the extracellular matrix (ECM), endothelial cells (ECs) are unable to sense, integrate and disseminate growth factor stimulated responses that drive growth of a vascular bed. Neuropilin-2 (NRP2) is a widely expressed membrane-bound multifunctional non-tyrosine kinase receptor, that has previously been implicated in influencing cell adhesion and migration by interacting with α5-integrin and regulating adhesion turnover. α5-integrin, and its ECM ligand fibronectin (FN) are both known to be upregulated during the formation of neo-vasculature. Despite being descriptively annotated as a candidate biomarker for aggressive cancer phenotypes, the EC-specific roles for NRP2 during developmental and pathological angiogenesis remain unexplored. The data reported here support a model whereby NRP2 actively promotes EC adhesion and migration by regulating dynamic cytoskeletal remodelling and by stimulating Rab11-dependent recycling of α5-integrin-p-FAK complexes to newly assembling adhesion sites. Furthermore, temporal depletion of EC-NRP2 in vivo impairs primary tumour growth by disrupting vessel formation. We also demonstrate that EC-NRP2 is required for normal postnatal retinal vascular development, specifically by regulating cell-matrix adhesion. Upon loss of endothelial NRP2, vascular outgrowth from the optic nerve during superficial plexus formation is disrupted, likely due to reduced FAK phosphorylation within sprouting tip cells.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3