Role of FYVE and Coiled-Coil Domain Autophagy Adaptor 1 in severity of COVID-19 infection

Author:

Smieszek Sandra P.ORCID,Przychodzen Bartlomiej,Polymeropoulos Christos,Polymeropoulos Vasilios,Polymeropoulos Mihael H.

Abstract

AbstractCoronaviruses remodel intracellular membranes to form specialized viral replication compartments, such as double-membrane vesicles where viral RNA genome replication takes place. Understanding the factors affecting host response is instrumental to design of therapeutics to prevent or ameliorate the course of infection.As part of explorative tests in hospitalized patients with confirmed COVID-19 infection participating in ODYSSEY trial, we obtained samples for whole genome sequencing analysis as well as for viral genome sequencing. Based on our data, we confirm one of the strongest severity susceptibility locus thus far reported in association with severe COVID-19: 3p21.31 locus with lead variant rs73064425. We further examine the associated region. Interestingly based on LD analysis we report 3 coding mutations within one gene in the region of FYVE and Coiled-Coil Domain Autophagy Adaptor 1 (FYCO1). We specifically focus on the role of FYCO1 modifiers and gain-of-function variants. We report the associations between the region and clinical characteristics in this severe set of COVID-19 patients.We next analyzed expression profiles of FYCO1 across all 466 compounds tested. We selected only those results that showed a significant reduction of expression of FYCO1. The most significant candidate was indomethacin – an anti-inflammatory that could potentially downregulate FYCO1. We hypothesize that via its direct effects on efficiency of viral egress, it may serve as a potent therapeutic decreasing the replication and infectivity of the virus. Clinical studies will be needed to examine the therapeutic utility of indomethacin and other compounds downregulating FYCO1 in COVID-19 infection and other strains of betacoronaviruses.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3