Structural basis of fitness of emerging SARS-COV-2 variants and considerations for screening, testing and surveillance strategy to contain their threat

Author:

Islam Sk Ramiz,Prusty Debasish,Manna Soumen Kanti

Abstract

AbstractWhile emergence of new SAS-COV-2 variants is posing grave challenge to efforts to deal with the COVID-19 pandemic, the structural and molecular basis of their fitness remain poorly understood. We performed in silico analysis of structures of two most frequent SARS-COV-2 mutations, namely, N501Y and E484K, to identify plausible basis of their fitness over the original strain. The analysis suggested that the N501Y mutation is associated with strengthening of intra- as well as intermolecular H-bond in the hACE2 receptor-spike protein complex, which could result in increased affinity and, therefore, higher infectivity. While E484K mutation did not seem to directly affect the binding with hACE2 receptor, it disrupted H-bonding and salt-bridge interaction associated with binding with neutralizing antibody, which could affect chance of re-infection, disease outcome. Survey of several other mutations showing reduction in antibody-mediated neutralization also revealed that similar disruption of H-bonding or salt-bridge or Van der Waals interaction might explain their phenotype. Analysis of GESS database indicated that N501Y, EK484 as well as these other mutations existed since March-April, 2020, might have evolved independently across the world and may keep accumulating, which could affect efficacy of vaccination and antibody-based therapies. Our analysis also indicated that these may spread in spite of current travel restrictions focused on few countries and evolve indigenously warranting intensification of surveillance for emerging mutations among all travellers as well as people in their dwelling zones. Meta-analysis of existing literature showed that repeat testing of travellers, contacts and others under scrutiny 7-11 days after the initial RT-PCR test may significantly help to contain the spread of emerging variants by catching false negative results. In addition, existing evidence calls for development of strain-specific tests, escalated sequencing and broadening the scope of surveillance including in hospitals and animal farms to contain the threat of emerging variants.

Publisher

Cold Spring Harbor Laboratory

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3