Deciphering 3D Human Sphygmopalpation Pulse Patterns using “X-ray” Images Acquired from Tactile Robotic Fingers

Author:

Kong Ka WaiORCID,Chan Ho-yinORCID,Xie Jun,Lee Francis Chee Shuen,Leung Alice Yeuk Lan,Guan Binghe,Shen Jiangang,Wong Vivian Chi-Woon Taam,Li Wen J.ORCID

Abstract

ABSTRACTSphygmopalpation at specific locations of human wrists has been used as a medical measurement technique in China since the Han Dynasty (202 BC - 220 AD); it is now generally accepted that traditional Chinese medicine (TCM) doctors are able to decipher 28 types of basic pulse patterns using their fingertips. This TCM technique of examining individual arterial pulses by palpation has undergone an upsurge recently in popularity as a low-cost and non-invasive diagnostic technique for monitoring patient health status. We have developed a pulse sensing platform for studying and digitalizing arterial pulse patterns via a TCM approach. This platform consists of a robotic hand with three fingers for pulse measurement and an artificial neural network (ANN) together with pulse signal preprocessing for pulse pattern recognition. The platforms previously reported by other research groups or marketed commercially exhibit one or more of the following imperfections: a single channel for data acquisition, low sensitivity and rigid sensors, lack of control of the applied pressure, and in many reported works, lack of an intelligent data analysis system. The platform presented here features up to three-dimensional (3D) tactile sensing channels for recording data and uses highly sensitive capacitive MEMS (microelectromechanical systems) flexible sensing arrays, pressure-feedback-controlled robotic fingers, and machine learning algorithms. We also proposed a methodology of obtaining “X-ray” image of pulse information constructed based on the sensing data from 3 locations and 3 applied pressures (i.e., mimicking TCM doctors), which contains all arterial pulse information in both spatial and temporal spans, and which could be used as an input to a deep learning algorithm. By applying our developed platform and algorithms, 3 types of consistent pulse patterns, i.e., “Hua” , “Xi” , and “Chen” , as described by TCM doctors”, could be identified in a selected group of 3 subjects who were diagnosed by TCM practitioners. We have shown the classification rates is 98.7% in training process and 84.2% in testing result for these 3 basic pulse patterns. The high classification rate of the developed platform could lead to further development of a high-level artificial intelligence system incorporating knowledge from TCM – the robotics finger system could become a standard clinical equipment for digitalizing and visualizing human arterial pulses

Publisher

Cold Spring Harbor Laboratory

Reference38 articles.

1. S. Z. Li , Pulse Diagnosis, Paradigm Press, 1993.

2. S. Wang and Y. Lin , Mai jing. Shanghai: Han fen lou, 1935.

3. A standardized procedure for locating and documenting ecg chest electrode positions: Consideration of the effect of breast tissue on ecg amplitudes in women

4. Z. Li and L. Zhang , Zhen jia zheng yan . Beijing: China Medical Science Press, 2011.

5. A Novel Noninvasive Measurement Technique for Analyzing the Pressure Pulse Waveform of the Radial Artery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3