1-Deoxysphingolipids Tempt Autophagy Resulting in Lysosomal Lipid Substrate Accumulation: Tracing the Impact of 1-Deoxysphingolipids on Ultra-Structural Level using a Novel Click-Chemistry Detection

Author:

Lamberz Christian,Hesse Marina,Kirfel Gregor

Abstract

SUMMARYSphingolipids (SLs) are pivotal components of biological membranes essentially contributing to their physiological functions. 1-deoxysphingolipids (deoxySLs), an atypical cytotoxic acting sub-class of SLs, is relevant for cellular energy homeostasis and is known to be connected to neurodegenerative disorders including diabetic neuropathy and hereditary sensory neuropathy type 1 (HSAN1). High levels of deoxySLs affect lipid membrane integrity in artificial liposomes. Accordingly, recent reports questioned the impact of deoxySLs on physiological lipid membrane and organelle functions leading to impaired cellular energy homeostasis.However, DeoxySL-related structural effects on cell membranes resulting in organelle dysfunction are still obscure. To illuminate disease-relevant sub-cellular targets of deoxySLs, we traced alkyne-containing 1-deoxysphinganine (alkyne-DOXSA) and resulting metabolites on ultra-structural level using a new labeling approach for electron microscopy (EM) termed “Golden-Click-Method” (GCM). To complement high-resolution analysis with membrane dynamics, selected intracellular compartments were traced using fluorescent live dyes.Our results conclusively linked accumulating cytotoxic deoxySLs with mitochondria and endoplasmic reticulum (ER) damage triggering Autophagy of mitochondria and membrane cisterna of the ER. The induced autophagic flux ultimately leads to accumulating deoxySL containing intra-lysosomal lipid crystals. Lysosomal lipid substrate accumulation impaired physiological lysosome functions and caused cellular starvation. Lysosomal exocytosis appeared as a mechanism for cellular clearance of cytotoxic deoxySLs. In sum, our data define new ultra-structural targets of deoxySLs and link membrane damage to autophagy and abnormal lysosomal lipid accumulation. These insights may support new conclusions about diabetes type 2 and HSNA1 related tissue damage.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3