Abstract
During visually guided behaviors, mere hundreds of milliseconds can elapse between a sensory input and its associated behavioral response. How spikes occurring at different times are integrated to drive perception and action remains poorly understood. We delivered random trains of optogenetic stimulation (white noise) to excite inhibitory interneurons in V1 of mice while they performed a visual detection task. We then performed a reverse correlation analysis on the optogenetic stimuli to generate a neuronal-behavioral kernel: an unbiased, temporally-precise estimate of how suppression of V1 spiking at different moments around the onset of a visual stimulus affects detection of that stimulus. Electrophysiological recordings enabled us to capture the effects of optogenetic stimuli on V1 responsivity and revealed that the earliest stimulus-evoked spikes are preferentially weighted for guiding behavior. These data demonstrate that white noise optogenetic stimulation is a powerful tool for understanding how patterns of spiking in neuronal populations are decoded in generating perception and action.
Publisher
Cold Spring Harbor Laboratory