Excitable axonal domains adapt to sensory deprivation in the olfactory system

Author:

George Nicholas MORCID,Macklin Wendy BORCID,Restrepo DiegoORCID

Abstract

AbstractThe axon initial segment, nodes of Ranvier, and the oligodendrocyte-derived myelin sheath have significant influence on the firing patterns of neurons and the faithful, coordinated transmission of action potentials to downstream brain regions. In the olfactory bulb, olfactory discrimination tasks lead to adaptive changes in cell firing patterns, and the output signals must reliably travel large distances to other brain regions along highly myelinated tracts. Whether myelinated axons adapt to facilitate olfactory sensory processing is unknown. Here, we investigate the morphology and physiology of mitral cell axons in the adult olfactory system, and show that unilateral sensory deprivation causes system-wide adaptations in axons. Mitral cell spiking patterns and action potentials also adapted to sensory deprivation. Strikingly, both axonal morphology and mitral cell physiology were altered on both the deprived and non-deprived sides, indicating system level adaptations to reduced sensory input. Our work demonstrates a previously unstudied mechanism of plasticity in the olfactory system.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3