Integrative phenotypic and genomic analyses reveal strain-dependent responses to acute ozone exposure and their associations with airway macrophage transcriptional activity

Author:

Tovar AdelaideORCID,Crouse Wesley L.ORCID,Smith Gregory J.ORCID,Thomas Joseph M.,Keith Benjamin P.ORCID,McFadden Kathryn M.,Moran Timothy P.ORCID,Furey Terrence S.ORCID,Kelada Samir N. P.ORCID

Abstract

AbstractAcute ozone (O3) exposure is associated with multiple adverse cardiorespiratory outcomes, the severity of which varies across human populations and rodent models from diverse genetic backgrounds. However, molecular determinants of response, including biomarkers that distinguish which individuals will develop more severe injury and inflammation (i.e., high responders), are poorly characterized. Here, we exposed adult, female and male mice from 6 strains, including 5 Collaborative Cross (CC) strains, to filtered air (FA) or 2 ppm O3 for 3 hours, and measured several inflammatory and injury parameters 21 hours later. Additionally, we collected airway macrophages and performed RNA-seq analysis to investigate influences of strain, treatment, and strain-by-treatment interactions on gene expression as well as transcriptional correlates of lung phenotypes. Animals exposed to O3 developed airway neutrophilia and lung injury, with varying degrees of severity. We identified many genes that were altered by O3 exposure across all strains, and examination of genes whose expression was influenced by strain-by-treatment interactions revealed prominent differences in response between the CC017/Unc and CC003/Unc strains, which were low- and high-responders, respectively (as measured by cellular inflammation and injury). Further investigation of this contrast indicated that baseline gene expression differences likely contribute to their divergent post-O3 exposure transcriptional responses. We also observed alterations in chromatin accessibility that differed by strain and with strain-by-treatment interactions, lending further plausibility that baseline differences can modulate post-exposure responses. Together, these results suggest that aspects of the respiratory response to O3 exposure may be mediated through altered airway macrophage transcriptional signatures, and further confirms the importance of gene-by-environment interactions in mediating differential responsiveness to environmental agents.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3