Abstract
AbstractBackgroundPulmonary hypertension, a progressive lung disorder with symptoms such as breathlessness and loss of exercise capacity, is highly debilitating and has a negative impact on the quality of life. In this study, we examined whether a multi-parametric approach using machine learning can improve mortality prediction.MethodsA population-based territory-wide cohort of pulmonary hypertension patients from January 1, 2000 to December 31, 2017 were retrospectively analyzed. Significant predictors of all-cause mortality were identified. Easy-to-use frailty indexes predicting primary and secondary pulmonary hypertension were derived and stratification performances of the derived scores were compared. A factorization machine model was used for the development of an accurate predictive risk model and the results were compared to multivariate logistic regression, support vector machine, random forests, and multilayer perceptron.ResultsThe cohorts consist of 2562 patients with either primary (n=1009) or secondary (n=1553) pulmonary hypertension. Multivariate Cox regression showed that age, prior cardiovascular, respiratory and kidney diseases, hypertension, number of emergency readmissions within 28 days of discharge were all predictors of all-cause mortality. Easy-to-use frailty scores were developed from Cox regression. A factorization machine model demonstrates superior risk prediction improvements for both primary (precision: 0.90, recall: 0.89, F1-score: 0.91, AUC: 0.91) and secondary pulmonary hypertension (precision: 0.87, recall: 0.86, F1-score: 0.89, AUC: 0.88) patients.ConclusionWe derived easy-to-use frailty scores predicting mortality in primary and secondary pulmonary hypertension. A machine learning model incorporating multi-modality clinical data significantly improves risk stratification performance.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献