Abstract
ABSTRACTSteroid hormones influence diverse biological processes throughout the animal life cycle, including metabolism, stress resistance, reproduction, and lifespan. In insects, the steroid hormone, 20-hydroxyecdysone (20E), is the central regulator of molting and metamorphosis, and has been shown to play roles in tissue morphogenesis. For example, amnioserosa contraction, which is a major driving force in Drosophila dorsal closure (DC), is defective in embryos mutant for 20E biosynthesis. Here, we show that 20E signaling modulates the transcription of several DC participants in the amnioserosa and other dorsal tissues during late embryonic development, including the zipper locus, which encodes for non-muscle myosin II heavy chain. Canonical 20E signaling typically involves the binding of Ecdysone receptor (EcR) and Ultraspiracle heterodimers to ecdysone-response elements (EcREs) within the promoters of ecdysone-responsive genes to drive their expression. During DC, we provide evidence that 20E signaling instead acts in parallel to the JNK cascade via a direct interaction between EcR and the AP-1 component, Jun, which together binds to genomic regions containing AP-1 binding sites but no EcREs to control gene expression. Our work demonstrates a novel mode of action for 20E signaling in Drosophila that likely functions beyond DC, and may provide further insights into mammalian steroid hormone receptor interactions with AP-1.
Publisher
Cold Spring Harbor Laboratory