Systemic administration of anti-CD20 indirectly reduces B cells in the inflamed meninges in a chronic model of central nervous system autoimmunity

Author:

Tesfagiorgis YoditORCID,Craig Heather C,Parham Kate AORCID,Kerfoot Steven MORCID

Abstract

AbstractAnti-CD20 B cell depleting therapies have demonstrated that B cells are important drivers of disease progress in Multiple Sclerosis, although the pathogenic mechanisms are not well understood. A population of B cells accumulates in the inflamed meninges in MS and also some chronic animal models of disease, typically adjacent to demyelinating lesions. The role of these meningeal B cells in disease is not known, nor is their susceptibility to anti-CD20 therapy. Here, we administered anti-CD20 to 2D2 IgHMOG spontaneous experimental autoimmune encephalomyelitis mice in the chronic phase of disease, after the establishment of meningeal B cell clusters. Compared to the circulation, lymph nodes, and spleen, B cell depletion from the CNS was delayed and not evident until 7d post administration of anti-CD20. Further, we did not find evidence that anti-CD20 accessed meningeal B cells directly, but rather that depletion was indirect and the result of ongoing turnover of the meningeal population and elimination of the peripheral pool from which it is sustained. The reduction of B cell numbers in the CNS coincided with less demyelination of the spinal cord white matter and also, surprisingly, an increase in the number of T cells recruited to the meninges but not parenchyma.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3