Author:
Jabbour Lea,Nguyen Trang,Gadet Rudy,Lohez Olivier,Mikaelian Ivan,Gonzalo Philippe,Luyten Thomas,Chalabi-Dcha Mounira,Bultynck Geert,Rimokh Ruth,Gillet Germain,Popgeorgiev Nikolay
Abstract
AbstractApoptosis plays a role in cell homeostasis in both normal development and disease. Bcl-xL, a member of the Bcl-2 family of proteins, regulates the intrinsic mitochondrial pathway of apoptosis. It is overexpressed in several cancers. Bcl-xL has a dual subcellular localization and is found at the mitochondria as well as the endoplasmic reticulum (ER). However, the biological significance of its ER localization is unclear. In order to decipher the functional contributions of the mitochondrial and reticular pools of Bcl-xL, we generated genetically modified mice expressing exclusively Bcl-xL at the ER, referred to as ER-xL, or the mitochondria, referred to as Mt-xL. By performing cell death assays, we showed that ER-xL MEFs show increased vulnerability to apoptotic stimuli but are more resistant to ER stress. Furthermore, ER-xL MEFs demonstrated a reduced expression of the Unfolded Protein Response (UPR) markers upon ER stress and displayed reduced inositol trisphosphate receptor (IP3R)-mediated ER calcium release. Collectively, our data show that upon ER stress, Bcl-xL negatively regulates IP3R-mediated calcium flux from the ER, which prevents ER calcium depletion and maintains the UPR and subsequent cell death in check. This work reveals a moonlighting function of Bcl-xL at the ER, apart from its cliché regulation of apoptosis.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献