The termite fungal cultivar Termitomyces combines diverse enzymes and oxidative reactions for plant biomass conversion

Author:

Schalk Felix,Gostinčar CeneORCID,Kreuzenbeck Nina B.,Conlon Benjamin H.,Sommerwerk Elisabeth,Rabe Patrick,Burkhardt Immo,Krüger ThomasORCID,Kniemeyer Olaf,Brakhage Axel A.ORCID,Gunde-Cimerman Nina,de Beer Z. Wilhelm,Dickschat Jeroen S.,Poulsen MichaelORCID,Beemelmanns Christine

Abstract

AbstractMacrotermitine termites have domesticated fungi in the genus Termitomyces as their primary food source using pre-digested plant biomass. To access the full nutritional value of lignin-enriched plant biomass, the termite-fungus symbiosis requires the depolymerization of this complex phenolic polymer. While most previous work suggests that lignocellulose degradation is accomplished predominantly by the fungal cultivar, our current understanding of the underlying biomolecular mechanisms remains rudimentary. Here, we provide conclusive OMICs and activity-based evidence that Termitomyces partially depolymerizes lignocellulose through the combined actions of high-redox potential oxidizing enzymes (laccases, aryl-alcohol oxidases and a manganese peroxidase), the production of extracellular H2O2 and Fenton-based oxidative degradation, which is catalyzed by a newly described 2-methoxybenzoquinone/hydroquinone redox shuttle system and mediated by secreted chelating dicarboxylic acids. In combination, our approaches reveal a comprehensive depiction of how the efficient biomass degradation mechanism in this ancient insect agricultural symbiosis is accomplished through a combination of white- and brown-rot mechanisms.ImportanceFungus-growing termites have perfected the decomposition of recalcitrant plant biomass to access valuable nutrients by engaging in a tripartite symbiosis with complementary contributions from a fungal mutualist and a co-diversified gut microbiome. This complex symbiotic interplay makes them one of the most successful and important decomposers for carbon cycling in Old World ecosystems. To date, most research has focused on the enzymatic contributions of microbial partners to carbohydrate decomposition. Here we provide genomic, transcriptomic and enzymatic evidence that Termitomyces also employs redox mechanisms, including diverse ligninolytic enzymes and a Fenton-based hydroquinone-catalyzed lignin-degradation mechanism, to break down lignin-rich plant material. Insights into these efficient decomposition mechanisms open new sources of efficient ligninolytic agents applicable for energy generation from renewable sources.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3