Using Deep Learning to Predict Human Decisions, and Cognitive Models to Explain Deep Learning Models

Author:

Fintz Matan,Osadchy Margarita,Hertz UriORCID

Abstract

AbstractDeep neural networks (DNN) models have the potential to provide new insights in the study of human decision making, due to their high capacity and data-driven design. While these models may be able to go beyond theory-driven models in predicting human behaviour, their opaque nature limits their ability to explain how an operation is carried out. This explainability problem remains unresolved. Here we demonstrate the use of a DNN model as an exploratory tool to identify predictable and consistent human behaviour in value-based decision making beyond the scope of theory-driven models. We then propose using theory-driven models to characterise the operation of the DNN model. We trained a DNN model to predict human decisions in a four-armed bandit task. We found that this model was more accurate than a reinforcement-learning reward-oriented model geared towards choosing the most rewarding option. This disparity in accuracy was more pronounced during times when the expected reward from all options was similar, i.e., no unambiguous good option. To investigate this disparity, we introduced a reward-oblivious model, which was trained to predict human decisions without information about the rewards obtained from each option. This model captured decision-sequence patterns made by participants (e.g., a-b-c-d). In a series of experimental offline simulations of all models we found that the general model was in line with a reward-oriented model’s predictions when one option was clearly better than the others.However, when options’ expected rewards were similar to each other, it was in-line with the reward-oblivious model’s pattern completion predictions. These results indicate the contribution of predictable but task-irrelevant decision patterns to human decisions, especially when task-relevant choices are not immediately apparent. Importantly, we demonstrate how theory-driven cognitive models can be used to characterise the operation of DNNs, making them a useful explanatory tool in scientific investigation.Author SummaryDeep neural networks (DNN) models are an extremely useful tool across multiple domains, and specifically for performing tasks that mimic and predict human behaviour. However, due to their opaque nature and high level of complexity, their ability to explain human behaviour is limited. Here we used DNN models to uncover hitherto overlooked aspects of human decision making, i.e., their reliance on predictable patterns for exploration. For this purpose, we trained a DNN model to predict human choices in a decision-making task. We then characterised this data-driven model using explicit, theory-driven cognitive models, in a set of offline experimental simulations. This relationship between explicit and data-driven approaches, where high-capacity models are used to explore beyond the scope of established models and theory-driven models are used to explain and characterise these new grounds, make DNN models a powerful scientific tool.

Publisher

Cold Spring Harbor Laboratory

Reference46 articles.

1. Visual fixations and the computation and comparison of value in simple choice

2. The Diffusion Decision Model: Theory and Data for Two-Choice Decision Tasks

3. Ubiquitous Log Odds: A Common Representation of Probability and Frequency Distortion in Perception, Action, and Cognition

4. Reinforcement learning: The Good, The Bad and The Ugly

5. Rescorla RA , Wagner AR . A theory of Pavlovian conditioning?: Variations in the effectiveness of reinforcement and nonreinforcement. In: Black A , Prokasy WF , editors. Classical conditioning II: current research and theory. New York, New York, USA: Appleton-Century-Crofts; 1972. pp. 64–99.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3