Snake venom phospholipases A2 possess a strong virucidal activity against SARS-CoV-2 in vitro and block the cell fusion mediated by spike glycoprotein interaction with the ACE2 receptor

Author:

Siniavin Andrei E.,Nikiforova Maria A.,Grinkina Svetlana D.,Gushchin Vladimir A.,Starkov Vladislav G.,Osipov Alexey V.,Tsetlin Victor I.,Utkin Yuri N.

Abstract

AbstractA new coronavirus was recently discovered and named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In the absence of specific therapeutic and prophylactic agents, the virus has infected almost hundred million people, of whom nearly two million have died from the viral disease COVID-19. The ongoing COVID-19 pandemic is a global threat requiring new therapeutic strategies. Among them, antiviral studies based on natural molecules are a promising approach. The superfamily of phospholipases A2 (PLA2s) consists of a large number of members that catalyze the hydrolysis of phospholipids at a specific position. Here we show that secreted PLA2s from the venom of various snakes protect to varying degrees the Vero E6 cells widely used for the replication of viruses with evident cytopathic action, from SARS-CoV-2 infection PLA2s showed low cytotoxicity to Vero E6 cells and the high antiviral activity against SARS-CoV-2 with IC50 values ranged from 0.06 to 7.71 μg/ml. Dimeric PLA2 HDP-2 from the viper Vipera nikolskii, as well as its catalytic and inhibitory subunits, had potent virucidal (neutralizing) activity against SARS-CoV-2. Inactivation of the enzymatic activity of the catalytic subunit of dimeric PLA2 led to a significant decrease in antiviral activity. In addition, dimeric PLA2 inhibited cell-cell fusion mediated by SARS-CoV-2 spike glycoprotein. These results suggest that snake PLA2s, in particular dimeric ones, are promising candidates for the development of antiviral drugs that target lipid bilayers of the viral envelope and may be good tools to study the interaction of viruses with host cell membranes.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3