Abstract
AbstractAfferent and efferent vagal fibers mediate bidirectional communication between the brain and visceral organs. Small, unmyelinated C-afferents constitute the majority of vagal fibers, play critical roles in numerous interoceptive circuits and autonomic reflexes in health and disease and may contribute to the efficacy and safety of vagus nerve stimulation (VNS). Selective engagement of C-afferents with electrical stimuli has not been feasible, due to the default fiber recruitment order: larger fibers first, smaller fibers last. Here, we determine and optimize an electrical stimulus that selectively engages vagal C-afferents. Intermittent KHz-frequency electrical stimulation (KES) activates motor and, preferentially, sensory vagal neurons in the brainstem. During KES, asynchronous activity of C-afferents increases, while that of larger fibers remains largely unchanged. In parallel, KES effectively blocks excitability of larger fibers while moderately suppressing excitability of C-afferents. By compiling selectivity indices in individual animals, we find that optimal KES parameters for C-afferents are >5KHz frequency and 7-10 times engagement threshold (×T) intensity in rats, 15-25×T in mice. These effects can be explained in computational models by how sodium channel responses to KES are shaped by axonal size and myelin. Our results indicate that selective engagement of vagal C-afferents is attainable by intermittent KES.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献