A conserved machinery underlies the synthesis of a chitosan layer in the Candida chlamydospore cell wall

Author:

Bemena Leo D.,Min Kyunghun,Konopka James B.ORCID,Neiman Aaron M.

Abstract

AbstractThe polysaccharide chitosan is found in the cell wall of specific cell types in a variety of fungal species where it contributes to stress resistance, or in pathogenic fungi, virulence. Under certain growth conditions, the pathogenic yeast Candida dubliniensis forms a cell type termed a chlamydosospore, which has an additional internal layer in its cell wall as compared to hyphal or yeast cell types. We report that this internal layer of the chlamydospore wall is rich in chitosan. The ascospore wall of Saccharomyces cerevisiae also has a distinct chitosan layer. As in S. cerevisiae, formation of the chitosan layer in the C. dubliniensis wall requires the chitin synthase CHS3 and the chitin deacetylase CDA2. In addition, three lipid droplet-localized proteins Rrt8, Srt1, and Mum3, identified in S. cerevisiae as important for chitosan layer assembly in the ascospore wall, are required for the formation of the chitosan layer of the chlamydospore wall in C. dubliniensis. These results reveal that a conserved machinery is required for the synthesis of a distinct chitosan layer in the walls of these two yeasts and may be generally important for incorporation of chitosan into fungal walls.ImportanceThe cell wall is the interface between the fungal cell and its environment and disruption of cell wall assembly is an effective strategy for antifungal therapies. Therefore, a detailed understanding of how cell walls form is critical to identify potential drug targets and develop therapeutic strategies. This work shows that a set of genes required for assembly of a chitosan layer in the cell wall of S. cerevisiae is also necessary for chitosan formation in a different cell type in a different yeast, C. dubliniensis. Because chitosan incorporation into the cell wall can be important for virulence, the conservation of this pathway suggests possible new targets for antifungals aimed at disrupting cell wall function.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3